Kingston Health Sciences Centre

Centre des sciences de la santé de Kingston

COVID-19: Of Variants & Vaccines

Gerald A. Evans, MD FRCPC Chair, Division of Infectious Disease Professor of Medicine, Queen's University Kingston Health Sciences Centre March 24, 2021

Hopeful...

The WHO declared a Public Health Emergency of International Concern around 2019-nCoV because of the spread of the virus outside of China, describing it as an "unprecedented outbreak".

– January 30, 2020

Not so Hopeful...

The WHO declared a COVID-19 a pandemic.

– March 11, 2020

Outline

- Where we are right now
- Variants
- Vaccines and Variants

SE Ontario Active Cases

Ontario Effective Reproduction Number

	Variant	Change in cases March 22, 2021	Change in cases March 23, 2021	Cumulative case count up to March 23, 2021
93.4%	Lineage B.1.1.7	19	30	1,389
	Lineage B.1.351	-1	3	50
	Lineage P.1	1	10	47
	Mutation detected (lineage not determined)*	666	909	14,803

Table 7. Summary of confirmed COVID-19 cases with a mutation or VOC detected: Ontario

Date March 23, 2021

Percentage of Weekly Specimens in Ontario Positive for the N501Y Spike Gene Mutation and Week-on-Week Growth

New variants of concern spread more easily than early variants

New variants of concern spread more easily than early variants

Weekly growth in Variants of Concern in Ontario matches other countries.

Danish Covid-19 Consortium, SARS-CoV-2 Variants of Concern in Switzerland, Public Health England

Case projections depend heavily on spread of variants

Scenarios based on 5 models, 3-5 scenarios each.

Optimistic scenario reflects:

- Modeling approach
- Low increase of VOCs over time
- Low transmissibility of VOCs
- Degree and timing of relaxing public health measures

Predictions informed by modeling from COVID-19 ModCollab, Fields Institute, McMasterU, PHO, YorkU Data (Observed Cases): covid-19.ontario.ca

SARS-CoV-2 Variants

Everyone Makes Mistakes

Peaturing J im Semion's Selame Street I by Emily Pert Engliey (Instrated by & Octaney)

What generates Variants of SARS-CoV-2?

Viruses, just like people, make mistakes.

What generates Variants of SARS-CoV-2?

- <u>All viruses can develop</u> <u>mutations during viral</u> <u>replication</u>
- The likelihood of mutation arising is related to overall rates of viral replication
 - The more viral replication cycles the more likely the occurrence of random mutations
- Right now there is a lot of viral replication with COVID-19 worldwide
 SARS

SARS-CoV-2 in in this group of viruses

Source: R Sanjuán & P Dominog-Calap Cell. Mol. Life Sci. (2016) 73:4433–4448

Mutational Frequencies of SARS-CoV-2

- Nucleotide mutational frequency of six genomic segments of SARS-CoV-2 over an 11-week period
- R5 (in yellow) is the genomic sequence that encompasses the Spike Protein of SARS-CoV-2

VOC Evolution & Nomenclature

Lineage	Genomes	Date range	Comments
A	223	5 January–27 April 2020	The root of the pandemic lies in this lineage. Many Chinese sequences with global exports
В	1,713	24 December 2019–3 May 2020	The base of this lineage lies in China, with extensive global travel between multiple locations
B.1	7,438	24 January–10 May 2020	Comprises the large Italian outbreak; it now represents many European outbreaks, with travel within Europe and from Europe to the rest of the world
B.1.1	6,286	15 February–9 May 2020	Major European lineage; exports to the rest of the world from Europe

Source: A Rambaut et al Nature Micro https://doi.org/10.1038/s41564-020-0770-5

The SARS-CoV-2 Family Tree

Source: A Rambaut et al Nature Micro https://doi.org/10.1038/s41564-020-0770-5

Why are we concerned about Variants?

- Possible consequences of emerging mutations
- 1. Increased transmissibility
- 2. Increased virulence
- 3. Decreased protection from current vaccines or previous natural infection

Current SARS-CoV-2 Variants of Concern (VOC)

- The chief variants of concern presently are:
 - B.1.1.7 (UK variant) 😹
 - B.1.351 (South African variant) ጆ
 - B.1.128 (Brazilian variant) 🔯
 - B.1.427/429 (California variant) 🌌
 - B.1.525/526 (New York variant) 🌌

Variant Name	Amino Acid Changes in Spike
20E (EU1)	A222V-D614G
20A.EU2	S477N-D614G
N439K-D614G	N439K-D614G
Mink Cluster 5 Variant	∆H69∆V70-Y453F-D614G-I692V-M1229I
B.1.1.7	ΔH69ΔV70-ΔY144-N501Y-A570D-D614G-P681H-
(a.k.a., 20I/501Y.V1, VOC 202012/01)	T716I-S982A-D1118H
B.1.351	L18F-D80A-D215G-AL242AA243AL244-R246I-
(a.k.a., 20H/501Y.V2)	K417N-E484K-N501Y)D614G-A701V

By Jonathan Corum and Carl Zimmer Jan. 18, 2021

At the heart of each coronavirus is its genome, a twisted strand of nearly 30,000 "letters" of RNA. These genetic instructions force infected human cells to assemble up 100 Tincs of rest fat on the 2 ronavirus multiply and spread.

B117-SARS-CoV-2

MUTATIONS

KGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTH FVTORNFYEPOIITTDNTFVSGNCDVVIGIVNNTVYDPLOPELDSFKEELDKYFKNH SPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIV GFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

Spike Protein Mutations_{Spike proteins in the B.1.1.7 lineage have two deletions and six}

substitutions in this sequence of amino acids.

- N501Y is the most common
 - Increases avidity for ACE2 receptor
 - Likely main reason for increased transmissibility
- Deletions like H69-70 and other mutations like E484K likely contribute to decrease binding by neutralizing antibodies to spike protein
- Other mutations being studied as to their implications
 - K417N
 - L452R

Written as letters, a B.1.1.7 spike protein looks like this:

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLF FSNVTWFHAI[Deletion]SGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIF TLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGV[Deletion]YHKNNKSWMES RVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVF LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQ

Why are mutations in the Spike Protein so important?

- Viral receptor that allows for binding to ACE2, the human cell receptor
 - If mutations in the spike protein increase that binding affinity, this could lead to transmissibility of COVID-19
- Our current vaccine strategy is to produce antibodies against the spike protein in the vaccine recipient
 - If mutations in the spike protein reduce the binding of antibodies to the site of their attachment, vaccine-induced immunity might be reduced to our current COVID-19 vaccines

How Spike Protein Changes Affect Interactions with ACE2 and Antibodies

Why are we concerned about Variants?

- <u>Worldwide spread</u> following their emergence
 - More variants are continuing to arise with uncontrolled numbers of cases around the world
- Without control on the numbers of cases, variants with better fitness will eventually predominate over the wild type strain of SARS-CoV-2

Source: https://nextstrain.org/ncov/global

Alberta COVID-19 Variant Case

- One case of SARS-CoV-2 variant B.1.1.7 imported from an international traveler to the province on January 1, 2021 led to 42 cases
- There have now been 1,886 cases found in Alberta

Transmission of SARS-CoV-2 Lineage B.1.1.7 in England

Source: E Volz et al Preprint https://doi.org/10.1101/2020.12.30.20249034

B.1.1.7 Infectiousness

- Mean duration of the proliferation phase
 - B117 = 5.3 days
 - Non-B117 = 2.0 days
- Mean duration of the clearance phase
 - B117 = 8.0 days
 - Non-B117 = 6.2 days
- Mean overall duration of infection (proliferation plus clearance)
 - B117 = 13.3 days
 - Non-B117 = 8.2 days
- Peak viral RNA Ct = 19.0 vs 20.2

Source: S Kissler et al https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37366884

VOC Transmissibility

- B.1.1.7 40-50% more transmissible¹
- B.1.427/B.1.429 20% more transmissible²
- B.1.351 50% more transmissible³
- B.1.128 ?
- B.1.525/B.1.526 ?

Sources:

- 1. NextTag
- 2. Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. MedRxiv 2021. doi: <u>https://doi.org/10.1101/2021.03.07.21252647</u>
- 3. Mahase E. Covid-19: what new variants are emerging and how are they being investigated? BMJ. 2021;372:n158. Available from: https://doi.org/10.1136/bmj.n15

Variants: Bottom Line

- B.1.1.7, the VOC originally identified in the UK is now dominating the trajectory of the pandemic curve in NA & Europe
- B.1.1.7 is associated with:
 - Increased transmission
 - Increased risk of hospitalization, ICU admission and death
- In general, there is a 10-day time lag until the full risk increase becomes apparent after the initial rise in cases

SARS-CoV-2 Variants and Immune Escape

South Africa AZ Vaccine Suspension

- Based on a study of around 2,000 participants whose median age was 31
- AstraZeneca vaccine had been showing a 75% efficacy against mild to moderate COVID cases until the B.1.351 strain became dominant in South Africa
- After that, the efficacy dropped to just 22% percent, based on 42 symptomatic cases
- However, the number of cases involved was too small to draw firm conclusions

South Africa AZ Vaccine Study

- MC DBRCT in South Africa of HIV- subjects
- Participants 18-65 years of age (mean age =31)
 - Placebo = 1010
 - Vaccine = 1011
- A 2-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate COVID-19 due to the B.1.351 variant

Other Preliminary Reports on Vaccine Effectiveness vs. B.1.351

- Preliminary data from J&J/Janssen[®] single-dose vaccine suggested it was 72% effective against moderate to severe COVID-19 in the U.S. compared with 57% effective in South Africa
- Novavax[®] said the efficacy of its vaccine in studies from the U.K. was 89% compared to 60% in South Africa

A participant in the South African trial of the AstraZeneca–University of Oxford COVID-19 vaccine has blood drawn before receiving her second dose. AP PHOTO/JEROME DELAY

South Africa suspends use of AstraZeneca's COVID-19 vaccine after it fails to clearly stop virus variant

Efficacy of Pfizer-BioNTech Vaccine vs. Variants

- 20 serum samples obtained from 15 participants in the RCT
- 2 or 4 weeks after the administration of the 2nd dose of BNT162b2

Source: Y Liu et al NEJM 2021 DOI: 10.1056/NEJMc2102017

Moderna Neutralizing Antibody Titres from Vaccine Recipients to B.1.1.7

Moderna Neutralizing Antibody Titres from Vaccine Recipients to B.1.351

Why are we concerned about Variants?

- Possible consequences of emerging mutations
- 1. Increased transmissibility 🔽
- 2. Increased virulence 🔽
- 3. Decreased protection from current vaccines or previous natural infection ?

COVID-19 Vaccines

Vaccine-induced Immunity to SARS-CoV-2

1. Protective immunity 🗸

- Immunity protects the individual from more severe disease
- 2. Sterilizing immunity $? \rightarrow \checkmark$
 - Immunity confers protection from infection
- 3. Transmission immunity $? \rightarrow \checkmark$
 - Immune individuals do not transmit infection
 - Herd immunity when sufficient numbers vaccinated

 \checkmark

Good

Better

 \checkmark

Best

Dynamics of the Adaptive Immune Response to Vaccines

Comparison of COVID-19 vaccines currently available in Canada

Source: C Chambers at https://healthydebate.ca/2021/03/topic/comparing-vaccines/?utm_source=mailpoet&utm_medium=email&utm_campaign=what-you-need-to-know-about-vaccines 6

Efficacy vs. safety of COVID-19 vaccines

Source: C Chambers at https://healthydebate.ca/2021/03/topic/comparing-vaccines/?utm_source=mailpoet&utm_medium=email&utm_campaign=what-you-need-to-know-about-vaccines_6

Time Periods for Pfizer & AZ & Vaccine RCTs Moderna Janssen 300K 200K 100K 7-day avg.

Aug.

Sept.

Oct.

Nov.

Dec.

Jan.

Feb.

0

March

April

May

June

July

Company	Platform	Dose	Non-clinical results	# who got vaccine	Protection from hospitalization from COVID-19	Protection from COVID severe dz (some at home)	Efficacy against milder COVID
moderna	mRNA-1273 mRNA in lipid nanoparticle	2	Neutralizing Abs; Strong Th1 CD4+, CD8+; protection from challenge (macaques)	~15,000	97% (1 in vaccine arm <u>after 2nd</u> <u>dose</u> <u>hospitalized</u>)	97% (30 cases in placebo arm; 0 in vaccine reported but 1 severe per FDA)	94.1%
P fizer	BNT162b2 mRNA in lipid nanoparticle	2	Neutralizing Abs; Strong Th1 CD4+, CD8+; protection from challenge (macaques)	~18,600	100%	100% (9 cases in placebo arm; 0 in vaccine- <u>1 initially</u> <u>severe but not</u>)	95%
Johnson-Johnson	JNJ-78436725 Non-replicating human adenovirus/DNA	1	Neutralizing Abs; Strong Th1 CD4+ > Th2; CD8+; challenge protection (macaque)	~22,000 US, Latin America, S. Africa	100%	85.4% across 3 sites (7 deaths, 16 hospitalizations, all in placebo arm)	72% US; 61% Latin America; 64% S. Africa (96% B1.351)
AstraZeneca	AZD 1222 Non-replicating Chimp Adenovirus- DNA	2	Neutralizing Abs; Strong Th1 CD4+ > Th2; CD8+; protection from challenge (macaques)	~8588	100%	100% (15 in placebo – all hospitalized; 0 in vaccine)	70% overall; 76% 1 dose; S. Africa trial halted for mild
NOVAVAX Creating Tomorrow's Vaccines Today	NVX-CoV2373 Spike protein/RBD + Matrix M adjuvant	2	Neutralizing Abs; Strong Th1 CD4 > Th2; challenge protection (macaques)	~8833 (Phase 3 UK; 2b SA)	100%	100% (10 severe in placebo in UK/SA; 0 in vaccine)	96.4% UK; 89% B117 UK; 55% SA (94% B1351)
S p utnik V	Ad26 and Ad5 adenovirus/DNA	2	NAbs; IFN-γ secretion PMBCs, cellular response	~14964	100%	100% (20 in placebo; 0 vaccine)	91.6%
Sinovac [.]	Inactivated virus	2	Antibodies (T cells next)	~12500	100%	83% (<u>tx</u> needed)	50.7% across

The rate of change of the number of deaths of people who had a positive test result for COVID-19 in the UK

Vaccine Effectiveness in Acute Care HCWs

2.

Table 1. New SARS-CoV-2 Infections among Vaccinated Health Care Workersfrom December 16, 2020, through February 9, 2021.

Days after Vaccination	Vaccinated Persons			
	With New Infection (N=379)	Tested (N=14,604)*	Eligible for Testing (N=36,659)†	
	number		number (percent)	
Dose 1				
Days 1–7	145	5794	35,673 (97.3)	
Days 8–14	125	7844	34,404 (93.8)	
Days 15–21	57	7958	32,667 (89.1)	
Day 22 or later, before dose 2	15	4286	32,327 (88.2)	
Dose 2				
Days 1–7	22	5546	23,100 (63.0)	
Days 8–14	8	4909	16,082 (43.9)	
Day 15 or later	7	4167	14,990 (40.9)	

Sources:

- 1. W Daniel et al NEJM 2021 DOI: 10.1056/NEJMc2102153
- 2. J Keehner et al NEJM 2021 DOI: 10.1056/NEJMc2101927

Studies to date that showed COVID-19 vaccines reduce asymptomatic infection (transmission)				
Setting	Finding of xx% reduction in asymptomatic or infections including asymptomatic	Reference		
Healthcare workers in England	86%	Hall SSRN, February 22, 2021		
Healthcare workers in Israel	75%	Amit, Lancet, March 6, 2021		
Patients in Mayo Clinic health system	88.7%	Pawlowski medRxiv, February 27, 2021		
Israel Ministry of Health (nationwide)	94%	Pfizer press release, March 11, 2021		
Israel general population (Pfizer)	90%	Dagan NEJM, February 24, 2021		
Pre-surgical patients in Mayo Clinic system swabbed asymptomatically	80%	Tande Clin Inf Dis, March 10, 2021		
Healthcare workers in Cambridge University Hospitals	75%	Weekes Authorea, February 24, 2021		
Nasal viral load values are most important determinant of transmissibility (Lancet study); Nasal viral loads from post-vaccination				

exposures are low and likely noninfectious per CT values (use rapid antigen tests after vaccination if want to test symptomatic)

Side effects after 1st dose vs. 2nd dose of vaccine

Source: C Chambers at https://healthydebate.ca/2021/03/topic/comparing-vaccines/?utm_source=mailpoet&utm_medium=email&utm_campaign=what-you-need-to-know-about-vaccines_6

Vaccine side effects in younger vs. older adults

Source: C Chambers at https://healthydebate.ca/2021/03/topic/comparing-vaccines/?utm_source=mailpoet&utm_medium=email&utm_campaign=what-you-need-to-know-about-vaccines_6

Side effects caused directly by the COVID-19 vaccine

Source: C Chambers at https://healthydebate.ca/2021/03/topic/comparing-vaccines/?utm_source=mailpoet&utm_medium=email&utm_campaign=what-you-need-to-know-about-vaccines 6

Summing up

- Where we are
 - Right now we're in a 3rd wave and in Ontario, a high % of SARS-CoV-2 variants
- Variants
 - A cause for concern due to increase in transmissibility and virulence
- Vaccines
 - They're effective and safe with more on the horizon

COVID 19 Prevention Toolbox

Our best ways to prevent contacting COVID 19 is by using the tools we have available.

Risks may vary based on your ability to maintain a 2-metre physical distance from others; the use of non-medical masks by you and others; and the measures in place to reduce exposure in the setting you are in. Generally, the risk of exposure will increase with prolonged duration and in closed indoor or crowded settings or close contact situations, particularly if activities involve forceful exhalation (talking loudly/shouting, singing, coughing). Individuals who receive the vaccine are 20 times less likely to contact COVID 19.